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On the Diophantine Equation 1 + 2a = 3b5c + 2d3e5f 

By Leo J. Alex 

Abstract. In this paper the Diophantine equation 1 + 2' = 3b5c + 2d3e5f, where a, b, c, d, e 
and f are nonnegative integers, is solved. The related equations 1 + 3a= 2b5c + 2d3e5f and 
1 + 5a = 2b3c + 2d3e5f are also solved. This work is related to and extends recent work of 
L. L. Foster, J. L. Brenner, and the author. 

1. Introduction. In this paper we consider equations of the form 

(1) 1 +pa= qbrc + pdqerf 

where p, q, r are the primes 2,3, and 5 in some order. These equations are 
exponential Diophantine equations, as it is the nonnegative integer exponents 
a, b, c, d, e, f which are to be found. 

Equation (1) is a special case of the general equation E xi = 0, i = 1,2,... ,m, 

where the primes dividing x * . .. xm are specified. There has been very little 
work done in general to solve such equations. It is unknown whether such equations 
always have a finite number of nonobvious solutions. Equation (1) has an infinite 
number of obvious solutions of the form (a, b, c, d, e, f ) = (t, 0, 0, t, 0, 0). 

It follows from the work of Dubois and Rhin [6] and Schlickewei [7] that the 
related equation pa + qb ? rc + s d = 0 has only finitely mnany solutions when p, q, r 
and s are distinct primes. Also, a result of Senge and Straus [8] implies that 
equations of the form E mai = En bj, where m and n are distinct positive integers, 
have only finitely many solutions. However, their results do not seem to apply to 
more general exponential equations. Also, their results do not determine the solu- 
tions. 

The author, L. L. Foster, and J. L. Brenner [1], [2], [4], [5], have recently developed 
techniques which solve such equations in many cases. These techniques involve 
careful consideration of the equation modulo a series of primes and prime powers. 
Recently, Yen [10] has applied these techniques to solve several exponential 
Diophantine equations including a special case of Eq. (1). 

It turns out that similar equations are not equally amenable to solution using 
modular arithmetic. For example, the equation 

1 + 3a = 2b + 293d 
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is easily solved with modular arithmetic techniques while the similar equation 

1 + 3 = 5 + 3Y d 

cannot be solved using these techniques alone. 
Here, with computer assistance, these techniques of modular arithmetic are used 

together with some recent results of Tijdeman [9] on exponential Diophantine 
inequalities. 

Equations of the type considered in this paper arise quite naturally in the 
character theory of finite groups. If G is a finite simple group and p is a prime 
dividing the order of G to the first power only, then the degrees xl, x2,.... ,xm of the 
ordinary irreducible characters in the principal p-block of G satisfy an equation of 
the form E ixi = 0, Si = ?1, where the primes dividing x1x2 X, are those in 

IGI/p. Much information concerning the group G can be obtained from the solutions 
to this degree equation. For example, the author in [3] has used solutions to the 
equation 1 + 2a = 3b5c + 2d3e5f to characterize the simple groups L(2,7), U(3, 3), 
L (3, 4) and A 8. 

In Sections 2, 3 and 4 the equations 1 + 2a = 3b5c + 2d3e5f, 1 + 3a = 2b5c + 

2d3e5f, and 1 + 5 a = 2b3c + 2b3e5f respectively, are solved. 

2. The Equation 1 + 2a = 3b5c + 2d3e5f. Here we consider the equation 

(2.1) 1 + 2a = 3b5c + 2d3e5f, 

where a, b, c, d, e, f are nonnegative integers. 
The first step in solving Eq. (2.1) is to test the equation modulo a sequence of 

primes and prime powers in order to determine information regarding the exponents 
a, b, c, d, e andf. The equation is tested by computer modulo 7, 13, 19, 37 and 73 'in 
that order. The computer used for this purpose was the CDC 6600 at the University 
of Minnesota Computer Center. These tests yield sets of congruences on the 
exponents a, b, d, and e modulo 36, and on the exponents c and f, the congruences 
are modulo 72. This is due to the fact that the exponents of 2,3, and 5 modulo 
7 * 13 * 19 * 37 * 73 are 36, 36, and 72 respectively. Next, the equation is tested 
modulo 5, 3, 9, 27, 4, 8, and 16. These tests yield that for a solution other than the 
trivial solutions (a, b, c, d, e, f ) = (t, 0,0, t, 0,0), the exponents must satisfy one of 
the 44 sets of congruences listed in Table 2.1. 

Before we consider the sets of congruences listed in Table 2.1 further, we list 
several useful lemmas. The first lemma is due to R. Tijdeman. A proof appears in [8] 
with computations due to P. L. Cijsouw and J. Korlaar. 

LEMMA 2.1. The only solutions to the inequality 0 < I pX - 
qyI < pX/2 in primes p, q 

with 1 < p < q < 20 are (p, q, x, y) = (2,3,1,1), (2,3,2,1), (2,3,3,2), (2,3,5,3), 
(2,3,8,5), (2,5,2,1), (2,5,7,3), (2,7,3,1), (2,11,7,2), (2,13,4,1), (2,17,4,1), 
(2,19,4,1), (3,5,3,2), (3,7,2,1), (3,11,2,1), (3,13,7,3), (5,7,1,1), (5,11,3,2), 
(7,19,3,2), (11,13,1,1), and(17,19,1,1). 

Our next two lemmas deal with two special cases of Eq. (2.1). 

LEMMA 2.2. The only nonnegative integral solutions to the equation 1 + 2a = 5c + 

2d5f are (a, c, d, f) = (3, 1, 2, 0), (5, 2, 3, 0), (6, 2, 3, 1), (7, 3, 2, 0), (10, 4, 4, 2), 
(10, 2, 3, 3), and (t, 0, t, 0), where t is an arbitrary nonnegative integer. 
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TABLE 2.1 

a (mod 36) b (mod 36) c (mod 72) d (mod 36) e (mod 36) f (mod 72) 

(1) 2 0 0 2 0 0 
(2) 6 0 0 6 0 0 
(3) 10 0 0 10 0 0 
(4) 14 0 0 14 0 0 
(5) 18 0 0 18 0 0 
(6) 22 0 0 22 0 0 
(7) 26 0 0 26 0 0 
(8) 30 0 0 30 0 0 
(9) 34 0 0 34 0 0 

(10) 3 0 1 2 0 0 
(11) 5 0 2 3 0 0 
(12) 6 0 2 3 0 1 
(13) 7 0 3 2 0 0 
(14) 10 0 4 4 0 2 
(15) 10 0 2 3 0 3 
(16) 9 0 0 9 0 0 
(17) 27 0 0 27 0 0 
(18) 2 1 0 1 0 0 
(19) 3 1 0 1 1 0 
(20) 4 2 0 3 0 0 
(21) 5 3 0 1 1 0 
(22) 5 2 0 3 1 0 
(23) 7 4 0 4 1 0 
(24) 9 4 0 4 3 0 
(25) 9 3 0 1 5 0 
(26) 6 1 1 1 0 2 
(27) 9 5 0 1 3 1 
(28) 6 0 1 2 1 1 
(29) 12 0 5 2 5 0 
(30) 6 2 1 2 0 1 
(31) 9 2 2 5 2 0 
(32) 9 4 1 2 3 0 
(33) 7 2 0 3 1 1 
(34) 4 0 1 2 1 0 
(35) 10 0 3 2 2 2 
(36) 10 2 2 5 0 2 
(37) 4 1 1 1 0 0 
(38) 7 1 2 1 3 0 
(39) 11 4 2 3 1 0 
(40) 8 2 2 5 0 0 
(41) 5 1 0 1 1 1 
(42) 5 1 1 1 2 0 
(43) 9 5 0 1 21 37 
(44) 11 22 38 3 1 0 

Proof. If c = 0, then f = 0 and a = d. Hence, we consider c > 0, so that a > d. 
Thus, 5 c 1 (mod 2d). This implies that 2d-2 divides c, whence 2" < 4c. 

Case 1: c > f. Here 2a = -1 (mod 5f), hence 2 * 5f-1 divides a. Thus, 5f < (5a)/2. 
Hence, 0 < 2a - 5c < 2d5f < lOac. But 5c < 2a. Hence, c < a/2. Now Lemma 2.1 

implies that 12a - 5CI > 2a/2 if (a, c) # (2, 1) or (7, 3). Thus, 2a/2 < 5a2 for (a, c) # 
(2, 1) or (7, 3). A short calculation now yields the bounds a < 22, c < 11, d < 5 and 
f < 2. 
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Case 2: c < f. Here 2a = -1 (mod 5C), whence 5c < (5a)/2. Thus, 0 < 2 a - 2d5f 
< (5a)/2. Hence, 0 < 2a-d - 5f < (5a)/2 * 2d. Now Lemma 2.1 gives 12 a-d 5f 
> 2(a-d)/2 if (a - d, f) 0 (2,1) or (7, 3). Thus, 2(a-d)/2 < (5a)/2. 2d and hence, 
2a/2 < (5a)/2, if (a - d, f) 0 (2, 1) or (7, 3). Thus, a < 8. When (a - d, f ) = (2,1), 
we get f = 1 so that c must be 0. But then 2 a = 5 . 2d which is impossible. When 
(a - d,f) = (7,3), c < 2. Hence, 2d < 8, so that d < 3. Hence, a < 10. Now a 
direct calculation or consideration of Table 2.1 yields no solutions other than those 
listed. 

LEMMA 2.3. The only nonnegative integral solutions to the equation 1 + 2 a = 3b + 

2d3e are (a, b, d, e) = (2, 1, 1,0), (3, 1, 1, 1), (4, 2, 3,0), (5, 3, 1, 1), (5, 2, 3, 1), (7,4,4, 1), 
(9, 4, 4, 3), (9, 3, 1, 5), and (t, 0, t, 0), where t is an arbitrary nonnegative integer. 

Proof. If b = 0, then e = 0 and a = d. Hence, let b> 0 and a> d. Thus, 3b 1 
(mod 2d) so that 2d-2 divides b and hence, 2d < 4b. 

Case 1: b > e. We have 2a -1 (mod 3'), whence 3e-1 divides a. Thus, 3e < 3a. 
This yields 0 < 2a - 3b < 2d3e < 12ab. But since 2a > 3b, b < (2a)/3. So, 0 < 2a 
- 3b < 8a2. Now Lemma 2.1 gives 12 a - 3b > 2a/2 unless (a, b) = (1,1), (2,1), 
(3, 2), (5, 3), or (8, 5). Thus, 2a/2 < 8a2 for (a, b) 0 (1, 1), (2, 1), (3, 2), (5, 3), or 
(8, 5). It follows that a < 24, b < 16, d < 6 and e < 3. 

Case 2: b < e. Here 2a _-1 (mod 3b). Thus, 3b-1 divides a, whence 3b < 3a. 
Thus, 0 < 2a -2d3e < 3b < 3a. Hence, we have 0 < 2a-d - 3e < (3a)/2d. Now 
Lemma 2.1 yields 12a-d - 3el > 2(a-d)/2 for (a - d, e) $ (1, 1), (2, 1), (3, 2), (5, 3), 
or (8, 5). Thus we obtain 2(a-d)/2 < (3a)/2d and hence, 2a/2 < 3a if (a - d, e) 0 
(1, 1), (2, 1), (3, 2), (5, 3), or (8, 5). Thus, a < 9. When (a - d, e) = (1, 1) or (2, 1) we 
have e = 1, so that b = 0. But then 2a = 3 . 2d, a contradiction. When (a - d, e) = 
(3, 2), we have b < 1 so that d < 2 and hence, a < 5. Similarly, when (a - d, e) = 
(5, 3), (8, 5) we obtain a < 7 and a < 12, respectively. Now consideration of Table 
2.1 or a direct calculation implies that the listed solutions are the only ones. 

We are now in a position to complete the solution of Eq. (2.1). We will do this by 
consideration of the sets of congruences listed in Table 2.1. For this purpose, we 
assume (a, b, c, d, e, f) is a solution to Eq. (2.1) other than the trivial solutions 
(t,0,0, t,0,0). 

LEMMA 2.4. The only nontrivial solutions to Eq. (2.1) with exponents satisfying 
congruence sets (1)-(25) in Table 2.1 are (a, b, c, d, e, f) = (3, 0, 1, 2, 0, 0), 
(5, 0, 2, 3, 0, 0), (6, 0, 2, 3, 0, 1), (7, 0, 3, 2, 0, 0), (10, 0, 4, 4, 0, 2), (10, 0, 2, 3, 0, 3), 
(2,1,0,1,0,0), (3,1,0,1,1,0), (4,2,0,3,0,0), (5,3,0,1,1,0), (5,2,0,3,1,0), 
(7,4,0,4, 1,0), (9, 4,0,4,3,0) and (9,3,0,1,5,0). 

Proof. For each of the congruence sets (1)-(9), b 0 (mod 36), e 0 (mod 36), 
c 0 (mod 72), f 0 (mod 72), and a d (mod 36). Now, since the exponents of 2 
and 5 modulo 27 are both 18, we obtain 1 + 2a_ {0 or 1) + {0 or 2a} (mod 27). 
Thus, since a t 9 (mod 18) in any of these cases, it must be true that b = e = 0. 
Similarly, consideration of Eq. (2.1) modulo 27 gives b = e = 0 for the congruence 
sets (10)-(15). Now, Lemma 2.2 gives the solutions (a, b, c, d, e, f ) = (3, 0, 1, 2, 0, 0), 
(5,0,2,3,0,0), (6,0,2,3,0,1), (7,0,3,2,0,0), (10,0,4,4,0,2), and (10,0,2,3,0,3). 
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TABLE 2.2 

Congruence Moduli Result 
Set Used 

(26) 3, 9,4, 31, 25, 17,97,128 Solution: (6,1,1,1,0,2) 
(27) 5,4,32,31,25,11,17,97, (9,5,0,1,3,1) 

128,512,257,1024 
(28) 3,9,8,31,25 (6,0,1,2,1,1) 
(29) 5,3, 8,64,17,97,256,193, (12,0,5,2,5,0) 

257,4096,109,81,163,243, 
1459,729,65537,8192 

(30) 3,27,8,31,25 (6,2,1,2,0,1) 
(31) 5,32,17,64,27,81,243, (9,2,2,5,2,0) 

109,163,128,97,257,1024 
(32) 5,8,31,25,109,81,163, (9,4,1,2,3,0) 

243 
(33) 5,9,27,16,31,25 (7,2,0,3,1,1) 
(34) 5,3,9,8,32 (4,0,1,2,1,0) 
(35) 3,27,8,31,61,125,101, (10,0,3,2,2,2) 

256,193,65537,2048 
(36) 3,27,64,17,31,61,11, (10,2,2,5,0,2) 

101,125 
(37) 5,3,9,4,32 (4,1,1,1,0,0) 
(38) 5,9,4,109,27,25,11, (7,1,2,1,3,0) 

101,125 
(39) 5,9,16,25,31,11,101, (11,4,2,3,1,0) 

125,64,193,65537,4096 
(40) 5,3,27,64,17,128,97, (8,2,2,5,0,0) 

257,512 
(41) 5,9,4,31,25 (5,1,0,1,1,1) 
(42) 5,9,27,4,31,25 (5,1,1,1,2,0) 
(43) 5,4,31,25,11 Contradiction 
(44) 5,9,32,17 Contradiction 

For the congruence sets (16), (17), and (19)-(25), c f 0 (mod 72) and a t 2 
(mod 4). Thus, since the exponents of 2 and 3 modulo 5 are both 4, consideration 
modulo 5 yields that c = f = 0 in each of these cases. Then Lemma 2.3 provides the 
solutions (a, b, c, d, e, f) = (3, 1, 0, 1, 1, 0), (4, 2, 0, 3, 0, 0), (5, 3, 0, 1, 1, 0), 
(5,2,0,3,1,0), (7,4,0,4,1,0), (9,4,0,4,3,0), and (9,3,0,1,5,0). Finally, for con- 
gruence set (18), consideration of Eq. (2.1) modulo 8 gives 1 + {4 or 0} 3 + {2 or 
0) (mod8). Thus a = 2, d = 1, and the solution (a, b, c, d, e, f) =(2,1,0,1,0,0) is 
determined. 

To determine the nontrivial solutions corresponding to the remaining congruence 
sets (26)-(44) of Table 2.1, more extensive considerations are required. These 
considerations consist of examination of the given congruence set modulo a carefully 
chosen sequence of primes and prime powers until a solution to Eq. (2.1) is 
determined or a contradiction is reached. Moduli sufficient for these determinations 
are given in Table 2.2. 

Next, we will illustrate these procedures by giving the details for the cases of 
congruence sets (43) and (29). 
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For congruence set (43) we have (a, b, c, d, e, f) = (9, 5, 0, 1, 21, 37) 
(mod 36, 36,72, 36, 36,72). Consideration of Eq. (2.1) modulo 5 gives 3 * 5c 3 
(mod 5). Thus, c = 0. Then consideration modulo 4 gives 3 * 2 = 2 (mod 4), whence 
d = 1. Now we may write Eq. (2.1) as 

(2.2) 1 + 2a = 3b + 2 3e5f. 

Next, consideration of Eq. (2.2) modulo 31 yields the six cases summarized in 
Table 2.3. 

Consideration modulo 25 leads to a contradiction in cases (3)-(6), and considera- 
tion modulo 11 gives a contradiction in cases (1) and (2). Note here that the 
exponents of 2, 3, and 5 modulo 31 are 5, 30, 3 respectively; the exponents of 2, 3 
modulo 25 are both 20; and the exponents of 2, 3, and 5 modulo 11 are 10, 5, and 5 
respectively. This shows there is no solution to Eq. (2.1) corresponding to con- 
gruence set (43). 

In the case of congruence set (29), considerations of Eq. (2.1) modulo 5, 3, and 8, 
respectively, yield that f = 0, b = 0 and d = 2. Thus, we may reduce Eq. (2.1) to the 
form 

(2.3) 1 + 2a = 5c + 4 . 3 

Next, since the exponent of 5 modulo 64 is 16, consideration of Eq. (2.3) modulo 64 
gives 5c- 53 (mod 64), whence c 5 (mod 16). Then, consideration modulo 17 and 
97 gives (a, c, e) (12,5, 5) (mod 48,96,48). Next, consideration modulo 256 yields 
5c 53 (mod 256), thus c 5 (mod 64). Here, c 5 (mod 192). Now, consideration 
modulo 193 gives 2a 43 (mod 193), so that a 12 (mod 96). Next, consideration 
modulo 257 yields that c e 5 (mod 256). Then, consideration modulo 4096 gives 
c 5 (mod 1024). At this juncture we have determined that a, c, and e satisfy the 
following congruences: 

(2.4) ( a, c, e) (12,5,5) (mod 2532, 21032,2832) 

Consideration of Eq. (2.3) modulo 109 using congruences (2.4) gives c e 5 
(mod 27), whence c e 5 (mod 54). Then, consideration modulo 81 yields a = 12 
(mod 54), and then consideration modulo 163 gives (a, e) (12,5) (mod 162). Next, 
consideration modulo 243 yields c 5 (mod 81). Now, consideration modulo the 
prime 1459 gives (a, c, e) (12,5,5) (modulo 486,243,1458). At this point, consid- 
eration of Eq. (2.3) modulo 729 gives 4 * 3e 243 (mod 729). Thus, e = 5 and we 
may write Eq. (2.3) as 

(2.5) 2a = 5c + 971. 

TABLE 2.3 

a (mod 5) b (mod 30) e (mod 30) a (mod 20) b (mod 20) 

(1) 1 11 15 1 1 
(2) 4 17 21 9 17 
(3) 4 5 3 9 5 
(4) 0 17 9 5 17 
(5) 0 23 3 5 13 
(6) 1 29 27 1 9 
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Then, consideration of Eq. (2.5) modulo 65537 utilizing congruences (2.4) gives 
5c 3125 (mod 65537), whence c 5 (mod 26). Thus, 2'a 4096 (mod 8192) which 
implies a = 12. Then, it must be the case that c = 5, so that we have shown that the 
sole solution to Eq. (2.1) corresponding to congruence set (29) of Table 2.1 is 
(a, b, c, d, e, f ) = (12,0,5,2,5, 0). 

We conclude this section by listing the complete set of solutions for Eq. (2.1). 

THEOREM 2.5. The nonnegative integral solutions to the exponential equation 1 + 2 a 
= 3b5c + 2d3e5f are (a, b, c, d, e, f) = (3, 0, 1, 2, 0, 0), (5, 0, 2, 3, 0, 0), (6, 0, 2, 3, 0, 1), 
(7, 0, 3, 2, 0, 0), (10, 0, 4, 4, 0, 2), (10, 0, 2, 3, 0, 3), (2, 1, 0, 1, 0, 0), (3, 1, 0, 1, 0), 
(4,2,0,3,0,0), (5,3,0, 1,0,0), (5,2,0,3,1,0), (7,4,0,4,1,0), (9,4,0,4,3,0), 
(9,3,0,1,5,0), (6,1,1,1,0,2), (9,5,0,1,3,1), (6,0,1,2,1,1), (12,0,5,2,5,0), 
(6, 2, 1, 2, 0, 1), (9, 2, 2, 5, 2, 0), (9, 4, 1, 2, 3, 0), (7, 2, 0, 3, 1, 1), (4, 0, 1, 2, 1, 0), 
(10,0,3,2,2,2), (10,2,2,5,0,2), (4,1,1,1,0,0), (7,1,2,1,3,0), (11,4,2,3,1,0), 
(8, 2, 2, 5, 0, 0), (5, 1, 0, 1, 1, 1), (5,1,1,1, 2,0), and (t, 0, 0, t, 0, 0), where t is any non- 
negative integer. 

3. The Equation 1 + 3 a = 2b5c + 2d3e5f* Here we will find all solutions to the 

equation 

(3.1) 1 + 3a = 2b5c + 2d3e5f 

in nonnegative integers a, b, c, d, e, and f. 
As in Section 2, we begin by examining Eq. (3.1) modulo 7, 13, 19, 37, 73, 5, 3, 9, 

27, 4, 8, and 16. These considerations imply that if (a, b, c, d, e, f ) is a nontrivial 
solution to Eq. (3.1), then the exponents must satisfy one of the sets of congruences 
listed in Table 3.1. 

The following lemma deals with the special cases b = d = 0 of Eq. (3.1). 

LEMMA 3.1. The only nonnegative integral solutions to the equation 1 + 3 a = 5c + 
3e5f are (a, c, e, f) =(2, 1, 0, 1), (3, 2, 1, 0), and (t, 0, t, 0), where t is an arbitrary 
nonnegative integer. 

Proof. If c = 0, then a = e and f = 0. Thus, we may assume c > 0, and hence, 
a > e. We have 5c 1 (mod 3e). Thus, 3e < (3c)/2. We distinguish the cases (1) 
c > f and (2) c <f. In Case (1) 3a =-1 (mod5f), so that 5f < (5a)/2. Thus, 
o < 3 a - 5c < 3e5f < (l5ac)/4. Also, c < alog3/log5 and hence, 0 < 3 a - 5c < 2 
* 6a2. By Lemma 2.1 we see that I3 a - 5Cl > 3a/2 if (a, c) :* (3,2). Hence, a < 10, 
c < 6, e < 2, f < 2. In Case (2) we have 3a_ -1 (mod 5C), whence 5c < (5a)/2. 
Thus, 0 < 3a - 3e5f < 5c < 5a/2, hence, 0 < 3a-e - 5f < (5a)/(2 3e). Thus, by 
Lemma 2.1, I3a-e - 5fl > 3(a-e)/2 if (a -e, f ) :* (3,2). Then, 2 - 3a/2 < 5a, whence 
a < 4. Thus, c < 1. When (a - e, f ) = (3,2), then c = 1, e = 0. Thus 3 a = 29, a 
contradiction. Consideration of Table 3.1 or a direct calculation now yields the listed 
solutions. 

Now in Lemma 3.2 and Table 3.2 we complete the solution of Eq. (3.1) by 
consideration of the congruence sets listed in Table 3.1. For this discussion we 
assume (a, b, c, d, e, f ) is a nontrivial solution to Eq. (3.1). Finally, we list all 
nonnegative integral solutions to Eq. (3.1) in Theorem 3.3. 
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TABLE 3.1 

a (mod 36) b (mod 36) c (mod 72) d (mod 36) e (mod 36) f (mod 72) 

(1) 2 0 0 0 2 0 
(2) 6 0 0 0 6 0 
(3) 10 0 0 0 10 0 
(4) 14 0 0 0 14 0 
(5) 18 0 0 0 18 0 
(6) 22 0 0 0 22 0 
(7) 26 0 0 0 26 0 
(8) 30 0 0 0 30 0 
(9) 34 0 0 0 34 0 

(10) 6 0 36 0 6 36 
(11) 30 0 36 0 30 36 
(12) 2 0 1 0 0 1 
(13) 3 0 2 0 1 0 
(14) 2 3 0 1 0 0 
(15) 4 6 0 1 2 0 
(16) 3 3 0 2 0 1 
(17) 5 6 0 2 2 1 
(18) 4 1 1 3 2 0 
(19) 6 1 1 4 2 1 
(20) 2 1 0 3 0 0 
(21) 6 7 1 1 2 1 
(22) 1 1 0 1 0 0 
(23) 3 1 1 1 2 0 
(24) 4 1 0 4 0 1 
(25) 4 4 1 1 0 0 
(26) 6 1 3 5 1 1 
(27) 3 4 0 2 1 0 
(28) 4 1 2 5 0 0 
(29) 3 2 1 3 0 0 
(30) 3 2 0 3 1 0 
(31) 2 2 0 1 1 0 
(32) 8 8 2 1 4 0 
(33) 4 5 0 1 0 2 
(34) 5 2 0 4 1 1 
(35) 5 2 2 4 2 0 
(36) 6 1 37 4 2 37 
(37) 6 7 37 1 2 37 
(38) 30 7 13 1 2 13 
(39) 30 7 49 1 2 49 
(40) 6 1 39 5 1 37 
(41) 2 5 71 1 2 71 
(42) 2 5 71 1 20 35 

LEMMA 3.2. The only nontrivial solutions to Eq. (3.1) with exponents satisfying 
congruence sets (1)-(13) in Table 3.1 are (a, b, c, d, e, f) = (2, 0, 1, 0, 0, 1) and 
(3,0,2,0,1,0). 

Proof. In each of the congruence sets (1)-(13) consideration of Eq. (3.1) modulo 8 
yields that b = 0 and d = 0. Then Lemma 3.1 gives the listed solutions. 

Table 3.2 lists the moduli used to complete consideration of the remaining 
congruence sets (14)-(42) of Table 3.1. 
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TABLE 3.2 

Congruence Moduli Result 
Set Used 

(14) 27 Solution: (2,3,0,1,0,0) 
(15) 5,27,4,81,109,163 " (4,6,0,1,2,0) 
(16) 5,3,8,16,25,11 " (3,3,0,2,0,1) 
(17) 5,27,8,31,25,64,17,97, " (5,6,0,2,2,1) 

257,128 
(18) 5,4,16,27,25,11 (4,1,1,3,2,0) 
(19) 27,4,31,25,17,32 (6,1,1,4,2,1) 
(20) 27 (2,1,0,3,0,0) 
(21) 27,4,31,25,61,11,128,97, " (6,7,1,1,2,1) 

257,256 
(22) 9 (1,1,0,1,0, 0) 
(23) 5,27,8,25,11 (3,1,1,1,2,0) 
(24) 5,3,4,31,25,17,64 (4,1,0,4,0,1) 
(25) 5,3,4,31,25,17,64 (4,4,1,1,0,0) 
(26) 9,4,31,25,17,64,125,101, " (6,1,3,5,1,1) 

251,625 
(27) 5,9,8,32,17 " (3,4,0,2,1,0) 
(28) 5,3,4,32,17,64,25,11,125, " (4,1,2,5,0,0) 

101 

(29) 5,3,8,16,25,11 " (3,2,1,3,0,0) 
(30) 5,9,8,16 " (3,2,0,3,1,0) 
(31) 27 "1 (2,2,0,1,1,0) 
(32) 5,4,25,31,61,11,101,125 " (8,8,2,1,4,0) 

151,32,17,97,257,128, 
512,243 

(33) 5,3,4,32,17,64,25,11, "1 (4,5,0,1,0,2) 
125,101 

(34) 5,9,8,31,25,17,64 "1 (5,2,0,4,1,1) 
(35) 5,27,8,17,64,31,11, " (5,2,2,4,2,0) 

101,125 
(36) 27,4,31,25 9" Contradiction 
(37) 27,4,31,25,61,11 ", Contradiction 
(38) 16,25,31,11,61 " Contradiction 
(39) 16,25,31,11,61 "1 Contradiction 
(40) 9,4,31,25 " Contradiction 
(41) 4,25,31 "1 Contradiction 
(42) 4,25,31 "' Contradiction 

THEOREM 3.3. The nonnegative integral solutions to the exponential equation 1 + 3a 
= 2b5c + 2d3e5f are (a, b, c, d, e, f ) = (2,0, 1,0,0, 1), (3,0,2,0, 1,0), (2, 3,0, 1,0,0), 
(4, 6, 0, 1, 2, 0), (3, 3, 0, 2, 0, 1), (5, 6, 0, 2, 2, 1), (4, 1, 1, 3, 2, 0), (6, 1, 1, 4, 2, 1), 
(2, 1, 0, 3, 0, 0), (6, 7, 1, 1, 2, 1), (1, 1, 0, 1, 0, 0), (3, 1, 1, 1, 2, 0), (4, 1, 0, 4, 0, 1), 
(4,4,1,1,0,0), (6,1,3,5,1,1), (3,4,0,2,1,0), (4,1,2,5,0,0), (3,2,1,3,0,0), 
(3, 2, 0, 3, 1, 0), (2, 2, 0, 1, 1, 0), (8, 8, 2, 1, 4, 0), (4, 5, 0, 1, 0, 2), (5, 2, 0, 4, 1, 1), 
(5, 2, 2, 4, 2, 0), and (t, 0, 0, 0, t, 0), where t is an arbitrary nonnegative integer. 

4. The Equation 1 + Sa = 2b3c + 2d3e ff Here, we find all solutions to the 
equation 

(4.1) 1 + 5a = 2b3c + 2d3e5f 

in nonnegative integers a, b, c, d, e, and f. 



276 LEO J. ALEX 

Preliminary examination of Eq. (4.1) modulo 7, 13, 19, 37, 73, 5, 3, 9, 27, 4, 8, and 
16 give the possible congruence sets in Table 4.1 for a nontrivial solution 
(a, b, c, d, e, f). As in previous sections (2) and (3) we first deal with the special 
case b = d = 0 (Lemma 4.1); then we complete the solution of Eq. (4.1) by 
considering the congruence sets of Table 4.1 (Lemma 4.2 and Table 4.2); finally we 
list the complete solution set for Eq. (4.1) in Theorem 4.3. 

LEMMA 4.1. The only nonnegative integral solutions to the equation 1 + Sa = 3c + 

3e5f are (a, c, e, f)= (1, 1, 1,0), (3,4,2, 1) and (t, 0,0, t), where t is an arbitrary 
nonnegative integer. 

Proof. If c = 0, then e = 0 and a f. Let c > 0, then a > f. Hence, 3c 1 
(mod 5f), so that sf S (5c)/4. 

Case (1): c > e. Here a =-1 (mod 3e), whence 3e < 3a. Hence, 13C - Sal < 3e5f 

< (15ac)/4. Now, since 5a > 3c, c < (alog5)/log3. Thus, 13c - 5cI < 6a2. Now 

Lemma 2.1 yields that 13c - Sal > 3C/2 unless (c, a) = (3,2). So 3c/2 < 6a2 unless 
(c, a) = (3, 2). Thus, Sa < 6a2(6a2 + 1) unless (c, a) = (3, 2). Thus, a < 7, c < 10, 
e < 2,andf< 1. 

TABLE 4.1 

a (mod 72) b (mod 36) c (mod 36) d (mod 36) e (mod 36) f (mod 72) 

(1) 9 0 0 0 0 9 

(2) 27 0 0 0 0 27 
(3) 45 0 0 0 0 45 
(4) 63 0 0 0 0 63 
(5) 1 0 1 0 1 0 

(6) 3 0 4 0 2 1 
(7) 2 3 0 1 2 0 
(8) 2 3 1 1 0 0 
(9) 4 6 2 1 0 2 

(10) 3 3 2 1 3 0 
(11) 2 1 0 3 1 0 
(12) 3 1 1 3 1 1 
(13) 2 1 2 3 0 0 
(14) 3 1 3 3 2 0 
(15) 2 4 0 1 0 1 
(16) 5 10 1 1 3 0 
(17) 5 1 3 10 1 0 
(18) 1 1 0 2 0 0 
(19) 2 1 1 2 0 1 
(20) 3 1 2 2 3 0 
(21) 1 2 0 1 0 0 
(22) 3 5 1 1 1 1 
(23) 3 2 2 1 2 1 
(24) 3 2 3 1 2 0 
(25) 2 4 0 1 18 37 
(26) 69 1 17 34 2 66 
(27) 9 1 21 26 0 68 
(28) 9 1 21 26 18 32 
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Case (2): c < e. Now 5a = -1 (mod 3C), hence 3c < 3a. Thus, I5 a - 3e5f < 3a. 
We have 13e - SafI < (3a)/5f. Then Lemma 2.1 implies that 3e/2 < (3a)/5f unless 
(e, a -f ) = (3, 2). Thus, we have Sa < 3c + 3e5f < 3e + 3e5f < 18a2. Thus, a < 3 
when (e, a - f ) 0 (3,2). If (e, a - f ) = (3,2), then it must be the case that c < 2, 
f = 0, and a S 2. Now, consideration of Table 4.1 or a direct calculation gives the 
listed solutions. 

LEMMA 4.2. The only nontrivial solutions to Eq. (4.1) with exponents satisfying 
congruence sets (1)-(6) in Table 4.1 are (a, b, c, d, e, f) = (1, 0, 1, 0, 1, 0) and 
(3,0,4,0,2,1). 

Proof. In each of the congruence sets (1)-(6), consideration of Eq. (4.1) modulo 4 
yields that b = 0 and d = 0. Then Lemma 4.1 gives the listed solutions. 

THEOREM 4.3. The nonnegative integral solutions to the exponential equation 1 + 5a 
= 2b3c + 2d3e5f are (a, b, c, d, e, f ) = (1,0, 1,0, 1,0), (3,0,4,0,2, 1), (2, 3,0, 1,2,0), 
(2,3, 1,1,0,0), (4,6,2,1,0,2), (3,3,2,1,3,0), (2,1,0,3,1,0), (3,1,1,3,1,1), 
(2,1,2,3,0,0), (3,1,3,3,2,0), (2,4,0,1,0,1), (5,10,1,1,3,0), (5,1,3,10,1,0), 
(1,1,0,2,0,0), (2,1,1,2,0,1), (3,1,2,2,3,0), (1,2,0,1,0,0), (3,5,1,1,1,1), 
(3, 2, 2, 1, 2, 1), (3, 2, 3, 1, 2, 0), and (t, 0, 0, 0,0, t), where t is an arbitrary nonnegative 
integer. 

TABLE 4.2 

Congruence Moduli Result 
Set Used 

(7) 4,16,3,27,5 Solution (2,3,0,1,2,0) 
(8) 4,16,3,9,5 " (2,3,1,1,0,0) 
(9) 4,3,27,64,17,97,128, " (4,6,2,1,0,2) 

125 
(10) 4,16,27,5,25,11,125,101, " (3,3,2,1,3,0) 

251,625 
(11) 5,4,16,3,9 " (2,1,0,3,1,0) 
(12) 4,16,27,25 " (3,1,1,3,1,1) 
(13) 4,16,3,27,5 " (2,1,2,3,0,0) 
(14) 4,16,27,5,25,11,125,101, " (3,1,3,3,2,0) 

251,625 
(15) 4,3,32,25 " (2,4,0,1,0,1) 
(16) 4,9,5,109,81,17,128,97, " (5,10,1,1,3,0) 

257,25,11,7681,65537,2048 
(17) 4,9,5,109,81,17,128,97, " (5,1,3,10,1,0) 

257,25,11,7681,65537,2048 
(18) 4,8,9,5 " (1,1,0,2,0,0) 
(19) 4,8,3,9,25 ", (2,1,1,2,0,1) 
(20) 4,8,27,5,109,81 " (3,1,2,2,3,0) 
(21) 4,8,9,5 " (1,2,0,1,0,0) 
(22) 4,27,31,25,17,64 " (3,5,1,1,1,1) 
(23) 4,8,27,25 ' (3,2,2,1,2,1) 
(24) 4,8,27,5,109,81 " (3,2,3,1,2,0) 
(25) 4,32,3,27 " Contradiction 
(26) 4,32 ", Contradiction 

(27) 4,25,31 " Contradiction 
(28) 4,25,31 " Contradiction 
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